Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Homological stability for configuration spaces of manifolds (1103.2441v3)

Published 12 Mar 2011 in math.AT, math.GT, and math.RT

Abstract: Let C_n(M) be the configuration space of n distinct ordered points in M. We prove that if M is any connected orientable manifold (closed or open), the homology groups H_i(C_n(M); Q) are representation stable in the sense of [Church-Farb]. Applying this to the trivial representation, we obtain as a corollary that the unordered configuration space B_n(M) satisfies classical homological stability: for each i, H_i(B_n(M); Q) is isomorphic to H_i(B_{n+1}(M); Q) for n > i. This improves on results of McDuff, Segal, and others for open manifolds. Applied to closed manifolds, this provides natural examples where rational homological stability holds even though integral homological stability fails. To prove the main theorem, we introduce the notion of monotonicity for a sequence of S_n--representations, which is of independent interest. Monotonicity provides a new mechanism for proving representation stability using spectral sequences. The key technical point in the main theorem is that certain sequences of induced representations are monotone.

Summary

We haven't generated a summary for this paper yet.