Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Supersymmetric Boundaries and Junctions in Four Dimensions (1103.2280v1)

Published 11 Mar 2011 in hep-th

Abstract: We make a comprehensive study of (rigid) N=1 supersymmetric sigma-models with general K\"ahler potentials K and superpotentials w on four-dimensional space-times with boundaries. We determine the minimal (non-supersymmetric) boundary terms one must add to the standard bulk action to make it off-shell invariant under half the supersymmetries without imposing any boundary conditions. Susy boundary conditions do arise from the variational principle when studying the dynamics. Upon including an additional boundary action that depends on an arbitrary real boundary potential B one can generate very general susy boundary conditions. We show that for any set of susy boundary conditions that define a Lagrangian submanifold of the K\"ahler manifold, an appropriate boundary potential B can be found. Thus the non-linear sigma-model on a manifold with boundary is characterised by the tripel (K,B,w). We also discuss the susy coupling to new boundary superfields and generalize our results to supersymmetric junctions between completely different susy sigma-models, living on adjacent domains and interacting through a "permeable" wall. We obtain the supersymmetric matching conditions that allow us to couple models with different K\"ahler potentials and superpotentials on each side of the wall.

Summary

We haven't generated a summary for this paper yet.