Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Paraproducts and Products of functions in $BMO(\mathbb R^n)$ and $H^1(\mathbb R^n)$ through wavelets (1103.1822v1)

Published 9 Mar 2011 in math.CA and math.CV

Abstract: In this paper, we prove that the product (in the distribution sense) of two functions, which are respectively in $ \BMO(\bRn)$ and $\H1(\bRn)$, may be written as the sum of two continuous bilinear operators, one from $\H1(\bRn)\times \BMO(\bRn) $ into $L1(\bRn)$, the other one from $\H1(\bRn)\times \BMO(\bRn) $ into a new kind of Hardy-Orlicz space denoted by $\H{\log}(\bRn)$. More precisely, the space $\H{\log}(\bRn)$ is the set of distributions $f$ whose grand maximal function $\mathcal Mf$ satisfies $$\int_{\mathbb Rn} \frac {|\mathcal M f(x)|}{\log(e+|x|) +\log (e+ |\mathcal Mf(x)|)}dx <\infty.$$ The two bilinear operators can be defined in terms of paraproducts. As a consequence, we find an endpoint estimate involving the space $\H{\log}(\bRn)$ for the $\div$-$\curl$ lemma.

Summary

We haven't generated a summary for this paper yet.