Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finiteness of outer automorphism groups of random right-angled Artin groups (1103.0479v2)

Published 2 Mar 2011 in math.GR

Abstract: We consider the outer automorphism group Out(A_Gamma) of the right-angled Artin group A_Gamma of a random graph Gamma on n vertices in the Erdos--Renyi model. We show that the functions (log(n)+log(log(n)))/n and 1-(log(n)+log(log(n)))/n bound the range of edge probability functions for which Out(A_Gamma) is finite: if the probability of an edge in Gamma is strictly between these functions as n grows, then asymptotically Out(A_Gamma) is almost surely finite, and if the edge probability is strictly outside of both of these functions, then asymptotically Out(A_Gamma) is almost surely infinite. This sharpens results of Ruth Charney and Michael Farber from their preprint "Random groups arising as graph products", arXiv:1006.3378v1.

Summary

We haven't generated a summary for this paper yet.