Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Order continuous extensions of positive compact operators on Banach lattices (1102.4912v1)

Published 24 Feb 2011 in math.FA

Abstract: Let $E$ and $F$ be Banach lattices. Let $G$ be a vector sublattice of $E$ and $T: G\rightarrow F$ be an order continuous positive compact (resp. weakly compact) operators. We show that if $G$ is an ideal or an order dense sublattice of $E$, then $T$ has a norm preserving compact (resp. weakly compact) positive extension to $E$ which is likewise order continuous on $E$. In particular, we prove that every compact positive orthomorphism on an order dense sublattice of $E$ extends uniquely to a compact positive orthomorphism on $E$.

Summary

We haven't generated a summary for this paper yet.