Optimal Quantization for Compressive Sensing under Message Passing Reconstruction
Abstract: We consider the optimal quantization of compressive sensing measurements following the work on generalization of relaxed belief propagation (BP) for arbitrary measurement channels. Relaxed BP is an iterative reconstruction scheme inspired by message passing algorithms on bipartite graphs. Its asymptotic error performance can be accurately predicted and tracked through the state evolution formalism. We utilize these results to design mean-square optimal scalar quantizers for relaxed BP signal reconstruction and empirically demonstrate the superior error performance of the resulting quantizers.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.