Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Many-one reductions and the category of multivalued functions (1102.3151v2)

Published 15 Feb 2011 in cs.CC and math.CT

Abstract: Multi-valued functions are common in computable analysis (built upon the Type 2 Theory of Effectivity), and have made an appearance in complexity theory under the moniker search problems leading to complexity classes such as PPAD and PLS being studied. However, a systematic investigation of the resulting degree structures has only been initiated in the former situation so far (the Weihrauch-degrees). A more general understanding is possible, if the category-theoretic properties of multi-valued functions are taken into account. In the present paper, the category-theoretic framework is established, and it is demonstrated that many-one degrees of multi-valued functions form a distributive lattice under very general conditions, regardless of the actual reducibility notions used (e.g. Cook, Karp, Weihrauch). Beyond this, an abundance of open questions arises. Some classic results for reductions between functions carry over to multi-valued functions, but others do not. The basic theme here again depends on category-theoretic differences between functions and multi-valued functions.

Citations (6)

Summary

We haven't generated a summary for this paper yet.