Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Character analogues of Ramanujan type integrals involving the Riemann $Ξ$-function (1102.2680v1)

Published 14 Feb 2011 in math.NT

Abstract: A new class of integrals involving the product of $\Xi$-functions associated with primitive Dirichlet characters is considered. These integrals give rise to transformation formulas of the type $F(z, \alpha,\chi)=F(-z, \beta,\bar{\chi})=F(-z,\alpha,\bar{\chi})=F(z,\beta,\chi)$, where $\alpha\beta=1$. New character analogues of transformation formulas of Guinand and Koshliakov as well as those of a formula of Ramanujan and its recent generalization are shown as particular examples. Finally, character analogues of a conjecture of Ramanujan, Hardy and Littlewood involving infinite series of M\"{o}bius functions are derived.

Summary

We haven't generated a summary for this paper yet.