Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quasi-Optimal Network Utility Maximization for Scalable Video Streaming (1102.2604v2)

Published 13 Feb 2011 in cs.MM and cs.NI

Abstract: This paper addresses rate control for transmission of scalable video streams via Network Utility Maximization (NUM) formulation. Due to stringent QoS requirements of video streams and specific characterization of utility experienced by end-users, one has to solve nonconvex and even nonsmooth NUM formulation for such streams, where dual methods often prove incompetent. Convexification plays an important role in this work as it permits the use of existing dual methods to solve an approximate to the NUM problem iteratively and distributively. Hence, to tackle the nonsmoothness and nonconvexity, we aim at reformulating the NUM problem through approximation and transformation of the ideal discretely adaptive utility function for scalable video streams. The reformulated problem is shown to be a D.C. (Difference of Convex) problem. We leveraged Sequential Convex Programming (SCP) approach to replace the nonconvex D.C. problem by a sequence of convex problems that aim to approximate the original D.C. problem. We then solve each convex problem produced by SCP approach using existing dual methods. This procedure is the essence of two distributed iterative rate control algorithms proposed in this paper, for which one can show the convergence to a locally optimal point of the nonconvex D.C. problem and equivalently to a locally optimal point of an approximate to the original nonconvex problem. Our experimental results show that the proposed rate control algorithms converge with tractable convergence behavior.

Citations (6)

Summary

We haven't generated a summary for this paper yet.