2000 character limit reached
On the Structure of the Minimum Critical Independent Set of a Graph (1102.1859v1)
Published 9 Feb 2011 in cs.DM and math.CO
Abstract: Let G=(V,E). A set S is independent if no two vertices from S are adjacent. The number d(X)= |X|-|N(X)| is the difference of X, and an independent set A is critical if d(A) = max{d(I):I is an independent set}. Let us recall that ker(G) is the intersection of all critical independent sets, and core(G) is the intersection of all maximum independent sets. Recently, it was established that ker(G) is a subset of core(G) is true for every graph, while the corresponding equality holds for bipartite graphs. In this paper we present various structural properties of ker(G). The main finding claims that ker(G) is equal to the union of all inclusion minimal independent sets with positive difference.