Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

Homogeneous links and the Seifert matrix (1102.0890v2)

Published 4 Feb 2011 in math.GT

Abstract: Homogeneous links were introduced by Peter Cromwell, who proved that the projection surface of these links, that given by the Seifert algorithm, has minimal genus. Here we provide a different proof, with a geometric rather than combinatorial flavor. To do this, we first show a direct relation between the Seifert matrix and the decomposition into blocks of the Seifert graph. Precisely, we prove that the Seifert matrix can be arranged in a block triangular form, with small boxes in the diagonal corresponding to the blocks of the Seifert graph. Then we prove that the boxes in the diagonal has non-zero determinant, by looking at an explicit matrix of degrees given by the planar structure of the Seifert graph. The paper contains also a complete classification of the homogeneous knots of genus one.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.