Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Consistency of Bayesian Linear Model Selection With a Growing Number of Parameters (1102.0826v2)

Published 4 Feb 2011 in math.ST and stat.TH

Abstract: Linear models with a growing number of parameters have been widely used in modern statistics. One important problem about this kind of model is the variable selection issue. Bayesian approaches, which provide a stochastic search of informative variables, have gained popularity. In this paper, we will study the asymptotic properties related to Bayesian model selection when the model dimension $p$ is growing with the sample size $n$. We consider $p\le n$ and provide sufficient conditions under which: (1) with large probability, the posterior probability of the true model (from which samples are drawn) uniformly dominates the posterior probability of any incorrect models; and (2) with large probability, the posterior probability of the true model converges to one. Both (1) and (2) guarantee that the true model will be selected under a Bayesian framework. We also demonstrate several situations when (1) holds but (2) fails, which illustrates the difference between these two properties. Simulated examples are provided to illustrate the main results.

Summary

We haven't generated a summary for this paper yet.