Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
117 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The tamed Milstein method for commutative stochastic differential equations with non-globally Lipschitz continuous coefficients (1102.0662v5)

Published 3 Feb 2011 in math.NA and math.PR

Abstract: For stochastic differential equations (SDEs) with a superlinearly growing and globally one-sided Lipschitz continuous drift coefficient, the classical explicit Euler scheme fails to converge strongly to the exact solution. Recently, an explicit strongly convergent numerical scheme, called the tamed Euler method, is proposed in [Hutzenthaler, Jentzen & Kloeden, Ann. Appl. Probab., 22 (2012), pp. 1611-1641.] for such SDEs. Motivated by their work, we here introduce a tamed version of the Milstein scheme for SDEs with commutative noise. The proposed method is also explicit and easily implementable, but achieves higher strong convergence order than the tamed Euler method does. In recovering the strong convergence order one of the new method, new difficulties arise and kind of a bootstrap argument is developed to overcome them. Finally, an illustrative example confirms the computational efficiency of the tamed Milstein method compared to the tamed Euler method.

Summary

We haven't generated a summary for this paper yet.