Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

`Lassoing' a phylogenetic tree I: Basic properties, shellings, and covers (1102.0309v3)

Published 1 Feb 2011 in q-bio.PE, cs.CE, and cs.DS

Abstract: A classical result, fundamental to evolutionary biology, states that an edge-weighted tree $T$ with leaf set $X$, positive edge weights, and no vertices of degree 2 can be uniquely reconstructed from the set of leaf-to-leaf distances between any two elements of $X$. In biology, $X$ corresponds to a set of taxa (e.g. extant species), the tree $T$ describes their phylogenetic relationships, the edges correspond to earlier species evolving for a time until splitting in two or more species by some speciation/bifurcation event, and their length corresponds to the genetic change accumulating over that time in such a species. In this paper, we investigate which subsets of $\binom{X}{2}$ suffice to determine (`lasso') a tree from the leaf-to-leaf distances induced by that tree. The question is particularly topical since reliable estimates of genetic distance - even (if not in particular) by modern mass-sequencing methods - are, in general, available only for certain combinations of taxa.

Citations (18)

Summary

We haven't generated a summary for this paper yet.