Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reduce to the Max: A Simple Approach for Massive-Scale Privacy-Preserving Collaborative Network Measurements (Extended Version) (1101.5509v1)

Published 28 Jan 2011 in cs.NI

Abstract: Privacy-preserving techniques for distributed computation have been proposed recently as a promising framework in collaborative inter-domain network monitoring. Several different approaches exist to solve such class of problems, e.g., Homomorphic Encryption (HE) and Secure Multiparty Computation (SMC) based on Shamir's Secret Sharing algorithm (SSS). Such techniques are complete from a computation-theoretic perspective: given a set of private inputs, it is possible to perform arbitrary computation tasks without revealing any of the intermediate results. In fact, HE and SSS can operate also on secret inputs and/or provide secret outputs. However, they are computationally expensive and do not scale well in the number of players and/or in the rate of computation tasks. In this paper we advocate the use of "elementary" (as opposite to "complete") Secure Multiparty Computation (E-SMC) procedures for traffic monitoring. E-SMC supports only simple computations with private input and public output, i.e., it can not handle secret input nor secret (intermediate) output. Such a simplification brings a dramatic reduction in complexity and enables massive-scale implementation with acceptable delay and overhead. Notwithstanding its simplicity, we claim that an E-SMC scheme is sufficient to perform a great variety of computation tasks of practical relevance to collaborative network monitoring, including, e.g., anonymous publishing and set operations. This is achieved by combining a E-SMC scheme with data structures like Bloom Filters and bitmap strings.

Citations (2)

Summary

We haven't generated a summary for this paper yet.