Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Every K(n)-local spectrum is the homotopy fixed points of its Morava module (1101.5201v1)

Published 27 Jan 2011 in math.AT

Abstract: Let n \geq 1 and let p be any prime. Also, let E_n be the Lubin-Tate spectrum, G_n the extended Morava stabilizer group, and K(n) the nth Morava K-theory spectrum. Then work of Devinatz and Hopkins and some results due to Behrens and the first author of this note, show that if X is a finite spectrum, then the localization L_{K(n)}(X) is equivalent to the homotopy fixed point spectrum (L_{K(n)}(E_n \wedge X)){hG_n}, which is formed with respect to the continuous action of G_n on L_{K(n)}(E_n \wedge X). In this note, we show that this equivalence holds for any (S-cofibrant) spectrum X. Also, we show that for all such X, the strongly convergent Adams-type spectral sequence abutting to \pi_\ast(L_{K(n)}(X)) is isomorphic to the descent spectral sequence that abuts to \pi_\ast((L_{K(n)}(E_n \wedge X)){hG_n}).

Summary

We haven't generated a summary for this paper yet.