Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Definable orthogonality classes in accessible categories are small (1101.2792v4)

Published 14 Jan 2011 in math.CT, math.AT, and math.LO

Abstract: We lower substantially the strength of the assumptions needed for the validity of certain results in category theory and homotopy theory which were known to follow from Vopenka's principle. We prove that the necessary large-cardinal hypotheses depend on the complexity of the formulas defining the given classes, in the sense of the Levy hierarchy. For example, the statement that, for a class S of morphisms in a locally presentable category C of structures, the orthogonal class of objects is a small-orthogonality class (hence reflective) is provable in ZFC if S is \Sigma_1, while it follows from the existence of a proper class of supercompact cardinals if S is \Sigma_2, and from the existence of a proper class of what we call C(n)-extendible cardinals if S is \Sigma_{n+2} for n bigger than or equal to 1. These cardinals form a new hierarchy, and we show that Vopenka's principle is equivalent to the existence of C(n)-extendible cardinals for all n. As a consequence, we prove that the existence of cohomological localizations of simplicial sets, a long-standing open problem in algebraic topology, is implied by the existence of arbitrarily large supercompact cardinals. This result follows from the fact that cohomology equivalences are \Sigma_2. In contrast with this fact, homology equivalences are \Sigma_1, from which it follows (as is well known) that the existence of homological localizations is provable in ZFC.

Summary

We haven't generated a summary for this paper yet.