Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Factorial Experiment on Scalability of Search Based Software Testing (1101.2301v1)

Published 12 Jan 2011 in cs.SE and cs.AI

Abstract: Software testing is an expensive process, which is vital in the industry. Construction of the test-data in software testing requires the major cost and to decide which method to use in order to generate the test data is important. This paper discusses the efficiency of search-based algorithms (preferably genetic algorithm) versus random testing, in soft- ware test-data generation. This study differs from all previous studies due to sample programs (SUTs) which are used. Since we want to in- crease the complexity of SUTs gradually, and the program generation is automatic as well, Grammatical Evolution is used to guide the program generation. SUTs are generated according to the grammar we provide, with different levels of complexity. SUTs will first undergo genetic al- gorithm and then random testing. Based on the test results, this paper recommends one method to use for automation of software testing.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Arash Mehrmand (1 paper)
  2. Robert Feldt (80 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.