Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using graphics processing units to generate random numbers (1101.1846v1)

Published 10 Jan 2011 in cs.DC

Abstract: The future of high-performance computing is aligning itself towards the efficient use of highly parallel computing environments. One application where the use of massive parallelism comes instinctively is Monte Carlo simulations, where a large number of independent events have to be simulated. At the core of the Monte Carlo simulation lies the Random Number Generator (RNG). In this paper, the massively parallel implementation of a collection of pseudo-random number generators on a graphics processing unit (GPU) is presented. The results of the GPU implementation, in terms of samples/s, effective bandwidth and operations per second, are presented. A comparison with other implementations on different hardware platforms, in terms of samples/s, power efficiency and cost-benefit, is also presented. Random numbers generation throughput of up to ~18MSamples/s have been achieved on the graphics hardware used. Efficient hardware utilization, in terms of operations per second, has reached ~98% of the possible integer operation throughput.

Citations (2)

Summary

We haven't generated a summary for this paper yet.