Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extreme Eigenvalue Distributions of Some Complex Correlated Non-Central Wishart and Gamma-Wishart Random Matrices (1101.1001v1)

Published 5 Jan 2011 in math.ST, cs.IT, math.IT, and stat.TH

Abstract: Let $\mathbf{W}$ be a correlated complex non-central Wishart matrix defined through $\mathbf{W}=\mathbf{X}H\mathbf{X}$, where $\mathbf{X}$ is $n\times m \, (n\geq m)$ complex Gaussian with non-zero mean $\boldsymbol{\Upsilon}$ and non-trivial covariance $\boldsymbol{\Sigma}$. We derive exact expressions for the cumulative distribution functions (c.d.f.s) of the extreme eigenvalues (i.e., maximum and minimum) of $\mathbf{W}$ for some particular cases. These results are quite simple, involving rapidly converging infinite series, and apply for the practically important case where $\boldsymbol{\Upsilon}$ has rank one. We also derive analogous results for a certain class of gamma-Wishart random matrices, for which $\boldsymbol{\Upsilon}H\boldsymbol{\Upsilon}$ follows a matrix-variate gamma distribution. The eigenvalue distributions in this paper have various applications to wireless communication systems, and arise in other fields such as econometrics, statistical physics, and multivariate statistics.

Citations (13)

Summary

We haven't generated a summary for this paper yet.