Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Affine Homogeneity of Algebraic Hypersurfaces Arising from Gorenstein Algebras (1101.0452v3)

Published 3 Jan 2011 in math.AC, math.AG, math.CV, and math.DG

Abstract: To every Gorenstein algebra $A$ of finite dimension greater than 1 over a field ${\Bbb F}$ of characteristic zero, and a projection $\pi$ on its maximal ideal ${\mathfrak m}$ with range equal to the annihilator $\hbox{Ann}({\mathfrak m})$ of ${\mathfrak m}$, one can associate a certain algebraic hypersurface $S_{\pi}\subset{\mathfrak m}$. Such hypersurfaces possess remarkable properties. They can be used, for instance, to help decide whether two given Gorenstein algebras are isomorphic, which for ${\Bbb F}={\Bbb C}$ leads to interesting consequences in singularity theory. Also, for ${\Bbb F}={\Bbb R}$ such hypersurfaces naturally arise in CR-geometry. Applications of these hypersurfaces to problems in algebra and geometry are particularly striking when the hypersurfaces are affine homogeneous. In the present paper we establish a criterion for the affine homogeneity of $S_{\pi}$. This condition requires the automorphism group $\hbox{Aut}({\mathfrak m})$ of ${\mathfrak m}$ to act transitively on the set of hyperplanes in ${\mathfrak m}$ complementary to $\hbox{Ann}({\mathfrak m})$. As a consequence of this result we obtain the affine homogeneity of $S_{\pi}$ under the assumption that the algebra $A$ is graded.

Summary

We haven't generated a summary for this paper yet.