Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

All liaisons are dangerous when all your friends are known to us (1012.5913v1)

Published 29 Dec 2010 in cs.SI, cs.CY, and cs.DM

Abstract: Online Social Networks (OSNs) are used by millions of users worldwide. Academically speaking, there is little doubt about the usefulness of demographic studies conducted on OSNs and, hence, methods to label unknown users from small labeled samples are very useful. However, from the general public point of view, this can be a serious privacy concern. Thus, both topics are tackled in this paper: First, a new algorithm to perform user profiling in social networks is described, and its performance is reported and discussed. Secondly, the experiments --conducted on information usually considered sensitive-- reveal that by just publicizing one's contacts privacy is at risk and, thus, measures to minimize privacy leaks due to social graph data mining are outlined.

Citations (31)

Summary

We haven't generated a summary for this paper yet.