Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Texture feature extraction in the spatial-frequency domain for content-based image retrieval (1012.5208v1)

Published 23 Dec 2010 in cs.CV, cs.IR, and cs.MM

Abstract: The advent of large scale multimedia databases has led to great challenges in content-based image retrieval (CBIR). Even though CBIR is considered an emerging field of research, however it constitutes a strong background for new methodologies and systems implementations. Therefore, many research contributions are focusing on techniques enabling higher image retrieval accuracy while preserving low level of computational complexity. Image retrieval based on texture features is receiving special attention because of the omnipresence of this visual feature in most real-world images. This paper highlights the state-of-the-art and current progress relevant to texture-based image retrieval and spatial-frequency image representations. In particular, it gives an overview of statistical methodologies and techniques employed for texture feature extraction using most popular spatial-frequency image transforms, namely discrete wavelets, Gabor wavelets, dual-tree complex wavelet and contourlets. Indications are also given about used similarity measurement functions and most important achieved results.

Citations (32)

Summary

We haven't generated a summary for this paper yet.