Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Machine Checked Model of Idempotent MGU Axioms For Lists of Equational Constraints (1012.4892v1)

Published 22 Dec 2010 in cs.LO

Abstract: We present formalized proofs verifying that the first-order unification algorithm defined over lists of satisfiable constraints generates a most general unifier (MGU), which also happens to be idempotent. All of our proofs have been formalized in the Coq theorem prover. Our proofs show that finite maps produced by the unification algorithm provide a model of the axioms characterizing idempotent MGUs of lists of constraints. The axioms that serve as the basis for our verification are derived from a standard set by extending them to lists of constraints. For us, constraints are equalities between terms in the language of simple types. Substitutions are formally modeled as finite maps using the Coq library Coq.FSets.FMapInterface. Coq's method of functional induction is the main proof technique used in proving many of the axioms.

Citations (9)

Summary

We haven't generated a summary for this paper yet.