Lie-Hopf algebras and their Hopf cyclic cohomology (1012.4827v1)
Abstract: The correspondence between Lie algebras, Lie groups, and algebraic groups, on one side and commutative Hopf algebras on the other side are known for a long time by works of Hochschild-Mostow and others. We extend this correspondence by associating a noncommutative noncocommutative Hopf algebra to any matched pair of Lie algebras, Lie groups, and affine algebraic groups. We canonically associate a modular pair in involution to any of these Hopf algebras. More precisely, to any locally finite representation of a matched pair object as above we associate a SAYD module to the corresponding Hopf algebra. At the end, we compute the Hopf cyclic cohomology of the associated Hopf algebra with coefficients in the aforementioned SAYD module in terms of Lie algebra cohomology of the Lie algebra associated to the matched pair object relative to an appropriate Levi subalgebra with coefficients induced by the original representation.