The Hannan-Quinn Proposition for Linear Regression (1012.4276v1)
Abstract: We consider the variable selection problem in linear regression. Suppose that we have a set of random variables $X_1,...,X_m,Y,\epsilon$ such that $Y=\sum_{k\in \pi}\alpha_kX_k+\epsilon$ with $\pi\subseteq {1,...,m}$ and $\alpha_k\in {\mathbb R}$ unknown, and $\epsilon$ is independent of any linear combination of $X_1,...,X_m$. Given actually emitted $n$ examples ${(x_{i,1}...,x_{i,m},y_i)}_{i=1}n$ emitted from $(X_1,...,X_m, Y)$, we wish to estimate the true $\pi$ using information criteria in the form of $H+(k/2)d_n$, where $H$ is the likelihood with respect to $\pi$ multiplied by -1, and ${d_n}$ is a positive real sequence. If $d_n$ is too small, we cannot obtain consistency because of overestimation. For autoregression, Hannan-Quinn proved that, in their setting of $H$ and $k$, the rate $d_n=2\log\log n$ is the minimum satisfying strong consistency. This paper solves the statement affirmative for linear regression as well which has a completely different setting.