Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Random partitions and asymptotic theory of symmetric groups, Hecke algebras and finite Chevalley groups (1012.4067v1)

Published 18 Dec 2010 in math.RT

Abstract: In this thesis, we investigate the asymptotics of random partitions chosen according to probability measures coming from the representation theory of the symmetric groups $S_n$ and of the finite Chevalley groups $GL(n,F_q)$ and $Sp(2n,F_q)$. More precisely, we prove laws of large numbers and central limit theorems for the $q$-Plancherel measures of type A and B, the Schur-Weyl measures and the Gelfand measures. Using the RSK algorithm, it also gives results on longest increasing subsequences in random words. We develop a technique of moments (and cumulants) for random partitions, thereby using the polynomial functions on Young diagrams in the sense of Kerov and Olshanski. The algebra of polynomial functions, or observables of Young diagrams is isomorphic to the algebra of partial permutations; in the last part of the thesis, we try to generalize this beautiful construction.

Summary

We haven't generated a summary for this paper yet.