Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Giambelli formula for the $S^1$-equivariant cohomology of type A Peterson varieties (1012.4053v4)

Published 18 Dec 2010 in math.AG, math.AT, and math.CO

Abstract: The main result of this note is a Giambelli formula for the Peterson Schubert classes in the $S1$-equivariant cohomology ring of a type $A$ Peterson variety. Our results depend on the Monk formula for the equivariant structure constants for the Peterson Schubert classes derived by Harada and Tymoczko. In addition, we give proofs of two facts observed by H. Naruse: firstly, that some constants which appear in the multiplicative structure of the $S1$-equivariant cohomology of Peterson varieties are Stirling numbers of the second kind, and secondly, that the Peterson Schubert classes satisfy a stability property in a sense analogous to the stability of the classical equivariant Schubert classes in the $T$-equivariant cohomology of the flag variety.

Summary

We haven't generated a summary for this paper yet.