Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analysis of Agglomerative Clustering (1012.3697v4)

Published 16 Dec 2010 in cs.DS, cs.CG, and cs.LG

Abstract: The diameter $k$-clustering problem is the problem of partitioning a finite subset of $\mathbb{R}d$ into $k$ subsets called clusters such that the maximum diameter of the clusters is minimized. One early clustering algorithm that computes a hierarchy of approximate solutions to this problem (for all values of $k$) is the agglomerative clustering algorithm with the complete linkage strategy. For decades, this algorithm has been widely used by practitioners. However, it is not well studied theoretically. In this paper, we analyze the agglomerative complete linkage clustering algorithm. Assuming that the dimension $d$ is a constant, we show that for any $k$ the solution computed by this algorithm is an $O(\log k)$-approximation to the diameter $k$-clustering problem. Our analysis does not only hold for the Euclidean distance but for any metric that is based on a norm. Furthermore, we analyze the closely related $k$-center and discrete $k$-center problem. For the corresponding agglomerative algorithms, we deduce an approximation factor of $O(\log k)$ as well.

Citations (81)

Summary

We haven't generated a summary for this paper yet.