2000 character limit reached
On the polynomial depth of various sets of random strings (1012.3548v2)
Published 16 Dec 2010 in cs.CC
Abstract: This paper proposes new notions of polynomial depth (called monotone poly depth), based on a polynomial version of monotone Kolmogorov complexity. We show that monotone poly depth satisfies all desirable properties of depth notions i.e., both trivial and random sequences are not monotone poly deep, monotone poly depth satisfies the slow growth law i.e., no simple process can transform a non deep sequence into a deep one, and monotone poly deep sequences exist (unconditionally). We give two natural examples of deep sets, by showing that both the set of Levin-random strings and the set of Kolmogorov random strings are monotone poly deep.