Markov entropy decomposition: a variational dual for quantum belief propagation
Abstract: We present a lower bound for the free energy of a quantum many-body system at finite temperature. This lower bound is expressed as a convex optimization problem with linear constraints, and is derived using strong subadditivity of von Neumann entropy and a relaxation of the consistency condition of local density operators. The dual to this minimization problem leads to a set of quantum belief propagation equations, thus providing a firm theoretical foundation to that approach. The minimization problem is numerically tractable, and we find good agreement with quantum Monte Carlo for the spin-half Heisenberg anti-ferromagnet in two dimensions. This lower bound complements other variational upper bounds. We discuss applications to Hamiltonian complexity theory and give a generalization of the structure theorem of Hayden, Jozsa, Petz and Winter to trees in an appendix.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.