Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Leray's problem for almost periodic flows (1012.1726v1)

Published 8 Dec 2010 in math.AP

Abstract: We prove existence and uniqueness for fully-developed (Poiseuille-type) flows in semi-infinite cylinders, in the setting of (time) almost-periodic functions. In the case of Stepanov almost-periodic functions the proof is based on a detailed variational analysis of a linear "inverse" problem, while in the Besicovitch setting the proof follows by a precise analysis in wave-numbers. Next, we use our results to construct a unique almost periodic solution to the so called "Leray's problem" concerning 3D fluid motion in two semi-infinite cylinders connected by a bounded reservoir. In the case of Stepanov functions we need a natural restriction on the size of the flux, while for Besicovitch solutions certain limitations on the generalized Fourier coefficients are requested.

Summary

We haven't generated a summary for this paper yet.