Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Acyclicity of complexes of flat modules (1012.1394v1)

Published 7 Dec 2010 in math.AC

Abstract: Let $R$ be a noetherian commutative ring, and [ \mathbb F: ...\rightarrow F_2\rightarrow F_1\rightarrow F_0\rightarrow 0 ] a complex of flat $R$-modules. We prove that if $\kappa(\mathfrak p)\otimes_R\mathbb F$ is acyclic for every $\mathfrak p\in\Spec R$, then $\mathbb F$ is acyclic, and $H_0(\mathbb F)$ is $R$-flat. It follows that if $\mathbb F$ is a (possibly unbounded) complex of flat $R$-modules and $\kappa(\mathfrak p)\otimes_R \mathbb F$ is exact for every $\mathfrak p\in\Spec R$, then $\mathbb G\otimes_R\bullet\mathbb F$ is exact for every $R$-complex $\mathbb G$. If, moreover, $\mathbb F$ is a complex of projective $R$-modules, then it is null-homotopic (follows from Neeman's theorem).

Summary

We haven't generated a summary for this paper yet.