Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

A polynomial invariant and duality for triangulations (1012.1310v4)

Published 6 Dec 2010 in math.CO

Abstract: The Tutte polynomial is a classical invariant, important in combinatorics and statistical mechanics. An essential feature of the Tutte polynomial is the duality for planar graphs G, $T_G(X,Y)\; =\; {T}_{G*}(Y,X)$ where $G*$ denotes the dual graph. We examine this property from the perspective of manifold topology, formulating polynomial invariants for higher-dimensional simplicial complexes. Polynomial duality for triangulations of a sphere follows as a consequence of Alexander duality. The main goal of this paper is to introduce and begin the study of a more general 4-variable polynomial for triangulations and handle decompositions of orientable manifolds. Polynomial duality in this case is a consequence of Poincare duality on manifolds. In dimension 2 these invariants specialize to the well-known polynomial invariants of ribbon graphs defined by B. Bollobas and O. Riordan. Examples and specific evaluations of the polynomials are discussed.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.