Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
84 tokens/sec
Gemini 2.5 Pro Premium
49 tokens/sec
GPT-5 Medium
16 tokens/sec
GPT-5 High Premium
19 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
77 tokens/sec
GPT OSS 120B via Groq Premium
476 tokens/sec
Kimi K2 via Groq Premium
234 tokens/sec
2000 character limit reached

Numerical treatment of long-range Coulomb potential with Berggren bases (1011.2117v2)

Published 9 Nov 2010 in math-ph, math.MP, nucl-th, and quant-ph

Abstract: The Schrodinger equation incorporating the long-range Coulomb potential takes the form of a Fredholm equation whose kernel is singular on its diagonal when represented by a basis bearing a continuum of states, such as in a Fourier-Bessel transform. Several methods have been devised to tackle this difficulty, from simply removing the infinite-range of the Coulomb potential with a screening or cut function to using discretizing schemes which take advantage of the integrable character of Coulomb kernel singularities. However, they have never been tested in the context of Berggren bases, which allow many-body nuclear wave functions to be expanded, with halo or resonant properties within a shell model framework. It is thus the object of this paper to test different discretization schemes of the Coulomb potential kernel in the framework of complex-energy nuclear physics. For that, the Berggren basis expansion of proton states pertaining to the sd-shell arising in the A ~ 20 region, being typically resonant, will be effected. Apart from standard frameworks involving a cut function or analytical integration of singularities, a new method will be presented, which replaces diagonal singularities by finite off-diagonal terms. It will be shown that this methodology surpasses in precision the two former techniques.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)