Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Relatively Prime Polynomials and Nonsingular Hankel Matrices over Finite Fields (1011.1760v1)

Published 8 Nov 2010 in math.CO

Abstract: The probability for two monic polynomials of a positive degree n with coefficients in the finite field F_q to be relatively prime turns out to be identical with the probability for an n x n Hankel matrix over F_q to be nonsingular. Motivated by this, we give an explicit map from pairs of coprime polynomials to nonsingular Hankel matrices that explains this connection. A basic tool used here is the classical notion of Bezoutian of two polynomials. Moreover, we give simpler and direct proofs of the general formulae for the number of m-tuples of relatively prime polynomials over F_q of given degrees and for the number of n x n Hankel matrices over F_q of a given rank

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.