Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Some Tractable Win-Lose Games (1010.5951v2)

Published 28 Oct 2010 in cs.GT and cs.CC

Abstract: Determining a Nash equilibrium in a $2$-player non-zero sum game is known to be PPAD-hard (Chen and Deng (2006), Chen, Deng and Teng (2009)). The problem, even when restricted to win-lose bimatrix games, remains PPAD-hard (Abbott, Kane and Valiant (2005)). However, there do exist polynomial time tractable classes of win-lose bimatrix games - such as, very sparse games (Codenotti, Leoncini and Resta (2006)) and planar games (Addario-Berry, Olver and Vetta (2007)). We extend the results in the latter work to $K_{3,3}$ minor-free games and a subclass of $K_5$ minor-free games. Both these classes of games strictly contain planar games. Further, we sharpen the upper bound to unambiguous logspace, a small complexity class contained well within polynomial time. Apart from these classes of games, our results also extend to a class of games that contain both $K_{3,3}$ and $K_5$ as minors, thereby covering a large and non-trivial class of win-lose bimatrix games. For this class, we prove an upper bound of nondeterministic logspace, again a small complexity class within polynomial time. Our techniques are primarily graph theoretic and use structural characterizations of the considered minor-closed families.

Citations (3)

Summary

We haven't generated a summary for this paper yet.