Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

Sublinear Optimization for Machine Learning (1010.4408v1)

Published 21 Oct 2010 in cs.LG

Abstract: We give sublinear-time approximation algorithms for some optimization problems arising in machine learning, such as training linear classifiers and finding minimum enclosing balls. Our algorithms can be extended to some kernelized versions of these problems, such as SVDD, hard margin SVM, and L2-SVM, for which sublinear-time algorithms were not known before. These new algorithms use a combination of a novel sampling techniques and a new multiplicative update algorithm. We give lower bounds which show the running times of many of our algorithms to be nearly best possible in the unit-cost RAM model. We also give implementations of our algorithms in the semi-streaming setting, obtaining the first low pass polylogarithmic space and sublinear time algorithms achieving arbitrary approximation factor.

Citations (133)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.