Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
88 tokens/sec
Gemini 2.5 Pro Premium
46 tokens/sec
GPT-5 Medium
16 tokens/sec
GPT-5 High Premium
17 tokens/sec
GPT-4o
95 tokens/sec
DeepSeek R1 via Azure Premium
90 tokens/sec
GPT OSS 120B via Groq Premium
461 tokens/sec
Kimi K2 via Groq Premium
212 tokens/sec
2000 character limit reached

Divergence-based characterization of fundamental limitations of adaptive dynamical systems (1010.2286v1)

Published 12 Oct 2010 in cs.IT, math.IT, and math.OC

Abstract: Adaptive dynamical systems arise in a multitude of contexts, e.g., optimization, control, communications, signal processing, and machine learning. A precise characterization of their fundamental limitations is therefore of paramount importance. In this paper, we consider the general problem of adaptively controlling and/or identifying a stochastic dynamical system, where our {\em a priori} knowledge allows us to place the system in a subset of a metric space (the uncertainty set). We present an information-theoretic meta-theorem that captures the trade-off between the metric complexity (or richness) of the uncertainty set, the amount of information acquired online in the process of controlling and observing the system, and the residual uncertainty remaining after the observations have been collected. Following the approach of Zames, we quantify {\em a priori} information by the Kolmogorov (metric) entropy of the uncertainty set, while the information acquired online is expressed as a sum of information divergences. The general theory is used to derive new minimax lower bounds on the metric identification error, as well as to give a simple derivation of the minimum time needed to stabilize an uncertain stochastic linear system.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)