Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improved complexity bounds for real root isolation using Continued Fractions (1010.2006v2)

Published 11 Oct 2010 in cs.SC

Abstract: We consider the problem of isolating the real roots of a square-free polynomial with integer coefficients using (variants of) the continued fraction algorithm (CF). We introduce a novel way to compute a lower bound on the positive real roots of univariate polynomials. This allows us to derive a worst case bound of $\sOB(d6 + d4\tau2 + d3\tau2)$ for isolating the real roots of a polynomial with integer coefficients using the classic variant \cite{Akritas:implementation} of CF, where $d$ is the degree of the polynomial and $\tau$ the maximum bitsize of its coefficients. This improves the previous bound of Sharma \cite{sharma-tcs-2008} by a factor of $d3$ and matches the bound derived by Mehlhorn and Ray \cite{mr-jsc-2009} for another variant of CF; it also matches the worst case bound of the subdivision-based solvers.

Summary

We haven't generated a summary for this paper yet.