Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A geometric study of Wasserstein spaces: Hadamard spaces (1010.0590v2)

Published 4 Oct 2010 in math.MG and math.DG

Abstract: Optimal transport enables one to construct a metric on the set of (sufficiently small at infinity) probability measures on any (not too wild) metric space X, called its Wasserstein space W(X). In this paper we investigate the geometry of W(X) when X is a Hadamard space, by which we mean that $X$ has globally non-positive sectional curvature and is locally compact. Although it is known that -except in the case of the line- W(X) is not non-positively curved, our results show that W(X) have large-scale properties reminiscent of that of X. In particular we define a geodesic boundary for W(X) that enables us to prove a non-embeddablity result: if X has the visibility property, then the Euclidean plane does not admit any isometric embedding in W(X).

Summary

We haven't generated a summary for this paper yet.