Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotic Normality of Support Vector Machine Variants and Other Regularized Kernel Methods (1010.0535v3)

Published 4 Oct 2010 in stat.ML

Abstract: In nonparametric classification and regression problems, regularized kernel methods, in particular support vector machines, attract much attention in theoretical and in applied statistics. In an abstract sense, regularized kernel methods (simply called SVMs here) can be seen as regularized M-estimators for a parameter in a (typically infinite dimensional) reproducing kernel Hilbert space. For smooth loss functions, it is shown that the difference between the estimator, i.e.\ the empirical SVM, and the theoretical SVM is asymptotically normal with rate $\sqrt{n}$. That is, the standardized difference converges weakly to a Gaussian process in the reproducing kernel Hilbert space. As common in real applications, the choice of the regularization parameter may depend on the data. The proof is done by an application of the functional delta-method and by showing that the SVM-functional is suitably Hadamard-differentiable.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Robert Hable (6 papers)
Citations (50)

Summary

We haven't generated a summary for this paper yet.