Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adjusted empirical likelihood with high-order precision (1010.0313v1)

Published 2 Oct 2010 in math.ST and stat.TH

Abstract: Empirical likelihood is a popular nonparametric or semi-parametric statistical method with many nice statistical properties. Yet when the sample size is small, or the dimension of the accompanying estimating function is high, the application of the empirical likelihood method can be hindered by low precision of the chi-square approximation and by nonexistence of solutions to the estimating equations. In this paper, we show that the adjusted empirical likelihood is effective at addressing both problems. With a specific level of adjustment, the adjusted empirical likelihood achieves the high-order precision of the Bartlett correction, in addition to the advantage of a guaranteed solution to the estimating equations. Simulation results indicate that the confidence regions constructed by the adjusted empirical likelihood have coverage probabilities comparable to or substantially more accurate than the original empirical likelihood enhanced by the Bartlett correction.

Citations (96)

Summary

We haven't generated a summary for this paper yet.