Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Orientability thresholds for random hypergraphs (1009.5489v1)

Published 28 Sep 2010 in math.CO and cs.DM

Abstract: Let $h>w>0$ be two fixed integers. Let $\orH$ be a random hypergraph whose hyperedges are all of cardinality $h$. To {\em $w$-orient} a hyperedge, we assign exactly $w$ of its vertices positive signs with respect to the hyperedge, and the rest negative. A $(w,k)$-orientation of $\orH$ consists of a $w$-orientation of all hyperedges of $\orH$, such that each vertex receives at most $k$ positive signs from its incident hyperedges. When $k$ is large enough, we determine the threshold of the existence of a $(w,k)$-orientation of a random hypergraph. The $(w,k)$-orientation of hypergraphs is strongly related to a general version of the off-line load balancing problem. The graph case, when $h=2$ and $w=1$, was solved recently by Cain, Sanders and Wormald and independently by Fernholz and Ramachandran, which settled a conjecture of Karp and Saks.

Citations (6)

Summary

We haven't generated a summary for this paper yet.