Orientability thresholds for random hypergraphs (1009.5489v1)
Abstract: Let $h>w>0$ be two fixed integers. Let $\orH$ be a random hypergraph whose hyperedges are all of cardinality $h$. To {\em $w$-orient} a hyperedge, we assign exactly $w$ of its vertices positive signs with respect to the hyperedge, and the rest negative. A $(w,k)$-orientation of $\orH$ consists of a $w$-orientation of all hyperedges of $\orH$, such that each vertex receives at most $k$ positive signs from its incident hyperedges. When $k$ is large enough, we determine the threshold of the existence of a $(w,k)$-orientation of a random hypergraph. The $(w,k)$-orientation of hypergraphs is strongly related to a general version of the off-line load balancing problem. The graph case, when $h=2$ and $w=1$, was solved recently by Cain, Sanders and Wormald and independently by Fernholz and Ramachandran, which settled a conjecture of Karp and Saks.