Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 105 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 45 tok/s
GPT-5 High 34 tok/s Pro
GPT-4o 108 tok/s
GPT OSS 120B 473 tok/s Pro
Kimi K2 218 tok/s Pro
2000 character limit reached

Privacy-Preserving Data-Oblivious Geometric Algorithms for Geographic Data (1009.1904v1)

Published 9 Sep 2010 in cs.CG and cs.DS

Abstract: We give efficient data-oblivious algorithms for several fundamental geometric problems that are relevant to geographic information systems, including planar convex hulls and all-nearest neighbors. Our methods are "data-oblivious" in that they don't perform any data-dependent operations, with the exception of operations performed inside low-level blackbox circuits having a constant number of inputs and outputs. Thus, an adversary who observes the control flow of one of our algorithms, but who cannot see the inputs and outputs to the blackbox circuits, cannot learn anything about the input or output. This behavior makes our methods applicable to secure multiparty computation (SMC) protocols for geographic data used in location-based services. In SMC protocols, multiple parties wish to perform a computation on their combined data without revealing individual data to the other parties. For instance, our methods can be used to solve a problem posed by Du and Atallah, where Alice has a set, A, of m private points in the plane, Bob has another set, B, of n private points in the plane, and Alice and Bob want to jointly compute the convex hull of A u B without disclosing any more information than what can be derived from the answer. In particular, neither Alice nor Bob want to reveal any of their respective points that are in the interior of the convex hull of A u B.

Citations (38)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.