Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Forcing nonperiodicity with a single tile (1009.1419v2)

Published 7 Sep 2010 in math.CO, cs.CG, and math.MG

Abstract: An aperiodic prototile is a shape for which infinitely many copies can be arranged to fill Euclidean space completely with no overlaps, but not in a periodic pattern. Tiling theorists refer to such a prototile as an "einstein" (a German pun on "one stone"). The possible existence of an einstein has been pondered ever since Berger's discovery of large set of prototiles that in combination can tile the plane only in a nonperiodic way. In this article we review and clarify some features of a prototile we recently introduced that is an einstein according to a reasonable definition. [This abstract does not appear in the published article.]

Citations (30)

Summary

We haven't generated a summary for this paper yet.