Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Survival of near-critical branching Brownian motion (1009.0406v1)

Published 2 Sep 2010 in math.PR

Abstract: Consider a system of particles performing branching Brownian motion with negative drift $\mu = \sqrt{2 - \epsilon}$ and killed upon hitting zero. Initially there is one particle at $x>0$. Kesten showed that the process survives with positive probability if and only if $\epsilon>0$. Here we are interested in the asymptotics as $\eps\to 0$ of the survival probability $Q_\mu(x)$. It is proved that if $L= \pi/\sqrt{\epsilon}$ then for all $x \in \R$, $\lim_{\epsilon \to 0} Q_\mu(L+x) = \theta(x) \in (0,1)$ exists and is a travelling wave solution of the Fisher-KPP equation. Furthermore, we obtain sharp asymptotics of the survival probability when $x<L$ and $L-x \to \infty$. The proofs rely on probabilistic methods developed by the authors in a previous work. This completes earlier work by Harris, Harris and Kyprianou and confirms predictions made by Derrida and Simon, which were obtained using nonrigorous PDE methods.

Summary

We haven't generated a summary for this paper yet.