Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-archimedean tame topology and stably dominated types (1009.0252v5)

Published 1 Sep 2010 in math.AG and math.LO

Abstract: Let $V$ be a quasi-projective algebraic variety over a non-archimedean valued field. We introduce topological methods into the model theory of valued fields, define an analogue $\hat {V}$ of the Berkovich analytification $V{an}$ of $V$, and deduce several new results on Berkovich spaces from it. In particular we show that $V{an}$ retracts to a finite simplicial complex and is locally contractible, without any smoothness assumption on $V$. When $V$ varies in an algebraic family, we show that the homotopy type of $V{an}$ takes only a finite number of values. The space $\hat {V}$ is obtained by defining a topology on the pro-definable set of stably dominated types on $V$. The key result is the construction of a pro-definable strong retraction of $\hat {V}$ to an o-minimal subspace, the skeleton, definably homeomorphic to a space definable over the value group with its piecewise linear structure.

Summary

We haven't generated a summary for this paper yet.