Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fixed-point and coordinate descent algorithms for regularized kernel methods (1008.5090v1)

Published 30 Aug 2010 in cs.LG, math.OC, stat.CO, and stat.ML

Abstract: In this paper, we study two general classes of optimization algorithms for kernel methods with convex loss function and quadratic norm regularization, and analyze their convergence. The first approach, based on fixed-point iterations, is simple to implement and analyze, and can be easily parallelized. The second, based on coordinate descent, exploits the structure of additively separable loss functions to compute solutions of line searches in closed form. Instances of these general classes of algorithms are already incorporated into state of the art machine learning software for large scale problems. We start from a solution characterization of the regularized problem, obtained using sub-differential calculus and resolvents of monotone operators, that holds for general convex loss functions regardless of differentiability. The two methodologies described in the paper can be regarded as instances of non-linear Jacobi and Gauss-Seidel algorithms, and are both well-suited to solve large scale problems.

Citations (6)

Summary

We haven't generated a summary for this paper yet.