Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-finitely generated relatively hyperbolic groups and Floyd quasiconvexity (1008.3470v7)

Published 20 Aug 2010 in math.GR and math.GT

Abstract: The paper consists of two parts. In the first one we show that a relatively hyperbolic group $G$ splits as a star graph of groups whose central vertex group is finitely generated and the other vertex groups are maximal parabolic subgroups. As a corollary we obtain that every group which admits 3-discontinuous and 2-cocompact action by homeomorphisms on a compactum is finitely generated with respect to a system of parabolic subgroups. The second part essentially uses the methods of topological entourages developed in the first part. Using also Floyd metrics we obtain finer properties of finitely generated relatively hyperbolic groups. We show that there is a system of "tight" curves satisfying the property of horospherical quasiconvexity. We then prove that the Floyd quasigeodesics are tight and so the parabolic subgroups of $G$ are quasiconvex with respect to the Floyd metrics. As a corollary we obtain that the preimage of a parabolic point by the Floyd map is the Floyd boundary of its stabilizer.

Summary

We haven't generated a summary for this paper yet.